TADARIDA BRASILIENSIS

SITATE N N DS.
SOME SOME SIGNATION OF SECULAR SITATION OF SECULAR

A "FREE TAIL," PROJECTING SIGNIFICANTLY
BEYOND THE UROPATAGIUM (TAIL
MEMBRANE), CHARACTERIZES FAMILY
MOLOSSIDAE - "FREE-TAILED BATS."

MOLOSSIDS OCCUPY AN EXTREME
MORPHOSPACE, WITH TADARIDA
BRASILIENSIS EXPLOITING AN AERIAL NICHE
REMINISCENT OF SWIFTS AND SWALLOWS.
T. BRASILIENSIS POSSESSES RELATIVELY
HIGH WING LOADING AND HIGH ASPECT
RATIO WINGS, WHICH ENABLE RAPID,
LONG-DISTANCE FLIGHTS AT
RECORD-BREAKING SPEEDS OF 99.5 MPH.

DISTINCTIVE "THERMAL WINDOWS" OR
"HOT SPOTS" ARE AN EXTRAORDINARY
ADAPTATION, FACILITATING
THERMOREGULATION. THESE HIGHLY
VASCULARIZED, HAIRLESS WINDOWS
MAINTAIN "HEAT BALANCE BY FLUSHING
THE UNINSULATED THERMAL WINDOW
WITH WARM BLOOD.
THEREBY DISSIPATING HEAT
WHILE BATS ARE FLYING UNDER
WARM CONDITIONS, BUT SHUNTING
BLOOD AWAY AND CONSERVING HEAT
WHEN THEY ARE FLYING IN COOLER AIR
AT HIGH ALTITUDES."

PROTUBERANCES OR TUBERCLES ALONG THE DORSAL LEADING-EDGE OF THE EARS.

RESEMBLE THE PECTORAL FLIPPERTUBERCLES OF MEGAPTERA NOVAEANGLIAE

(HUMPBACK WHALES). THESE
PROTUBERANCES PRESUMABLY INCREASE
MANEUVERABILITY AND DELAY STALL.

HIGH ALTITUDES CONSTRAIN
AERODYNAMICS, AND THUS, NECESSITATE
ADAPTATIONS FOR EFFICIENT OXYGEN
UPTAKE AND TRANSPORT. MOLOSSIDS,
INCLUDING T. BRASILIENSIS, "HAVE SOME
OF THE HIGHEST REPORTED HEMATOCRITS
AND A SLIGHTLY LOWER OXYGEN AFFINITY
THAN OTHER SPECIES" - AN INREDIBLE
ADAPTATION FOR HIGH ALTITUDE FLIGHT.

MALE TADARIDA PRODUCE COMPLEX
MULTISYLLABIC SONGS - EACH MALE
CONSTRUCTING A DISTINCTIVE MELODY OF
"SEQUENCES, TEMPORAL STRUCTURES, AND
A TIMED RHYTHM."
"SINGING [MAY HAVE] FIRST EVOLVED IN T.

"SINGING [MAY HAVE] FIRST EVOLVED IN T.
BRASILIENSIS IN SUPPORT OF MIGRATORY
BEHAVIORS BY HELPING BATS IN TRANSIT
QUICKLY FIND SUITABLE DAY ROOSTS
WHEN PASSING THROUGH FOREIGN
TERRITORY, AND SUBSEQUENTLY BECAME
INTEGRATED WITH MATING BEHAVIORS
BECAUSE SINGERS GAINED BETTER ACCESS
TO MIGRATING FEMALES IN THE SPRING."

ECHOLOCATING BATS MANIPULATE THE ACOUSTIC PROJECTION PATTERN OF THEIR SONAR PULSE EMISSIONS. TADARIDA ACHIEVE THIS BY FINELY ADJUSTING THE SHAPE OF THEIR MOUTH CAVITY (BEAM-FORMING) - A BEHAVIOR SIMILAR TO SUPRALARYNGEAL SPEECH MOTOR CONTROL BY HUMANS.
RAISING THE NOSE TIP ALONE CREATES A SMALL APERTURE AND WIDE-ANGLE BEAM. AND SIMULTANEOUSLY RAISING THE FRONT AND SIDE LIPS CREATES A WIDER APERTURE WITH NARROWER BEAM.